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Summary 

A genetic algorithm (GA) based method for docking ensembles of small, flexible ligands to receptor 
proteins using NMR-derived constraints is described. In this method, three translations and rotations 
of the ligand and the dihedral angles of the ligand are represented by binary strings and evolve under 
the genetic operators of cross-over, mutation, migration and selection. The fitness function for the 
selection process includes distance and dihedral restraints and a repulsive van der Waals term. The GA 
was applied to a three-atom model system as well as to the streptavidin-biotin complex using simulated 
intermolecular distance restraints. In both systems, the GA was able to obtain low-energy conformations 
when only a single binding site was simulated. Calculations were also performed using distance restraints 
from two distinct binding sites. In these simulations, the GA was able to obtain low-energy conforma- 
tions corresponding to ligand molecules in each of the two sites. The inclusion of additional ligands in 
the ensemble did not result in an energetic benefit, confirming that only two ligand conformations were 
necessary to fulfill the distance restraints. This method allows for a direct investigation of the minimum 
number of ligand orientations necessary to fulfill experimental distance restraints, and simultaneously 
yields detailed structural information about each site. 

Introduction 

Several problems are encountered in the structure 
determination of protein complexes with small or weakly 
bound ligands using NMR-derived restraints. First, be- 
cause of imprecise distance bounds, multiple conforma- 
tions may satisfy the distance restraints. Second, no single 
conformation may satisfy all of the restraints, indicating 
multiple and distinct binding sites and/or orientations. 
Thus, in the structural determination of such systems, 
techniques must be employed which are able to search 
vast regions of conformational space, but also incorporate 
the possibility of conformational averaging. A variety of 
searching algorithms are available which at least partially 
fulfill these criteria. Monte Carlo and Distance Geometry 
(Have1 and Wtithrich, 1984) based techniques can effec- 
tively search large regions of space, but the problem of 
conformational averaging cannot typically be included. 
Molecular Dynamics (Nilges et al., 1988) with the use of 
time-averaged restraints (Torda et al., 1989; Schmitt et 
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al., 1993; Mierke et al., 1994) can incorporate multiple 
conformations, but conformations which do not corre- 
spond to the ‘true’ minima may be sampled in the averag- 
ing process, and the results are sensitive to the time con- 
stant (r) used in the simulation, the length of the simula- 
tion, and the initial configuration of the system. 

This paper presents an alternative method for NMR- 
based docking of a ligand to its receptor using the com- 
puter-based paradigm of genetic algorithms (GAS). Bor- 
rowing from biological principles of adaptation and evol- 
ution, computer-based genetic algorithms are becoming 
an increasingly popular method for optimization in a 
variety of complex nonlinear systems (Goldberg, 1989; 
Holland, 1992; Forrest, 1993). The feature of GAS which 
makes them distinct from other stochastic or deterministic 
searching algorithms is that they use a population of 
individual solutions which are able to share information 
with each other through the genetic operators. In a ‘sur- 
vival of the fittest’ scheme, better solutions will reproduce 
and pass on their genetic information more frequently, 
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while less fit individuals will die off. Recently, GAS have 
been successfully used for conformational analysis of 
small peptides and organic molecules (Judson et al., 1993; 
McGarrah and Judson, 1993) and in an investigation of 
the folding of small proteins (Dandekar and Argos, 1994) 
by evolving a set of dihedral angles, [$,...,Q& to de- 
scribe particular conformations. Here we have encoded a 
GA which evolves not only a binary representation of the 
ligand dihedral angles, but also three translations (x,y,z) 
and three rotations of the ligand coordinates. In order to 
investigate whether multiple binding orientations are 
involved, ensembles of ligand molecules were generated 
by concatenation of the gene strings for each individual 
conformation and evolved under the influence of the GA. 
These ensembles were averaged before fitness evaluation. 
The utility of this technique is demonstrated on a model 
three-spin system and on the streptavidin-biotin complex. 

Methods 

The basic GA 
As shown in Fig. 1, the first step of the GA approach 

requires that an appropriate representation scheme be 
defined. This scheme must encode all of the values of the 
evolved parameters into a format suitable for schema 
processing (Holland, 1992) (typically binary encoding), 
and the components of the representation are generally 
referred to as ‘genes’ and ‘chromosomes’. A single gene 
contains the value of one parameter, whereas a chromo- 
some contains multiple genes. Next, an initial population 
is generated which consists of random bit strings. The 
third step of the GA protocol calls for phenotypic evalu- 
ation. In this stage, the gene for each member of the 
population is ‘decoded’ and the resulting parameters 
(phenotype) are submitted to the fitness function. After a 
fitness has been associated with each gene in the popula- 
tion, individual members of the population are selected 
for mating. Mating probabilities assigned to each member 
are generally based on their contribution to the total 
fitness of the population, and the least fit members very 
often have mating probabilities close to zero. At this 
stage the actual selection of information occurs, since the 
best fit individuals will have a higher probability of pro- 
ducing ‘offspring’ for the next generation. The penulti- 
mate step in the GA is analogous to the evolutionary 
processes of inheritance, where the offspring inherit por- 
tions of their parents’ genetic material. The genetic oper- 
ator for the inheritance of such information is called 
cross-over (shown schematically in Fig. 1). Another com- 
monly used genetic operator is mutation (also shown in 
Fig. l), which causes random changes in the genes. Final- 
ly, the offspring replace the parents and the process 
returns to the fitness evaluation stage. The evolution 
continues until some energy criterion is met or a maxi- 
mum number of generations is exceeded. 

Population gene1 :001011011110101000101... 

Initialization 
gal.32 :111101111010000110110... 

g&iv :000001000011000111100... 
I I 

1 

I 
4 

Energy Criterion Met? Yes 
Maximum Generations Exceeded? 1 

1 No 

Selection Probabilistic mate selection based upon energy 

Parent1 : 0000~~0000000000 

P~~~:lllllllllllll~llll xi 
Offspringl: 000~0000000000000 

offspring2: 1111111111111~1111 

4 

I I Mutation 
Pwent: 00000000001111111111 

4 4 
mspriIlg:00100000001111110111 

I 1 
I I 

L, 4 
Replace Parents with Offspring 

Exit 4 

Fig. 1. Flow chart for the genetic algorithm. 

Assuming constant bond lengths and bond angles, the 
conformation of any molecule can be defined by a set of 
dihedral angles, and this representation scheme has been 
successfully used in several applications (Judson et al., 
1993; McGarrah and Judson, 1993; Dandekar and Argos, 
1994). We have incorporated this representation scheme 
into our GA and have also included x-, y- and z-coor- 
dinate translations and rotations of the ligand molecule 
for the purpose of docking the ligand to the receptor. 
These parameters were encoded in the GA as follows: each 
member of the population was represented by a binary 
string (the chromosome) which contained multiple genes, 
and each gene encoded the value of an evolved parame- 
ter. For example, a typical gene would consist of eight 
bits and can have genomic values ranging from 0 to 255. 
The chromosome (llOOlOOl)(OlOOOlll)(llllllll) con- 
tains three genes with values of 201, 71 and 255, respect- 
ively. These values can then be scaled to yield an appro- 
priate value for the geometric parameter of interest: genes 
which represented dihedral angles or coordinate rotations 
were scaled to range between O-360’, while coordinate 
translations were scaled to place the ligand within a spec- 
ified region of Cartesian space (i.e., -20 to 20 A). 

The progress of the GA is driven by the fitness of the 
individuals within the population. Very fit individuals 
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should mate more often and produce more offspring. 
Therefore, the choice of the fitness function is critical to 
the success of the GA and must meet several criteria. 
First, the fitness function must determine the optimum 
values of the evolved parameters. Second, the differences 
between fit and unfit individuals must be appreciable and 
appropriate. Finally, the individuals with highest fitness 
must be reasonable solutions to the problem. The first 
criterion is fairly obvious and simply states that the para- 
meters which are evolved must actually affect the fitness 
of the individual, else the evolution is undirected. The 
second criterion states that there must be large enough 
differences in fitness between fit and unfit individuals. If 
such significant differences are not present, then unfit 
individuals will have essentially the same mating probabil- 
ity as the fit individuals, and no evolution will occur. 
However, if these differences are too large and the fit 
individuals dominate the mating pool at the early stages 
of the simulation, ‘premature evolution’ may occur 
(Goldberg, 1989) and only a local solution will be found. 
The third criterion states that the solutions must be rea- 
sonable. For example, given a distance restraint list for 
some N-atom system, solutions may be found which 
satisfy the restraints but have many van der Waals (vdW) 
violations. These solutions are not reasonable, and the 
vdW terms must be included in the fitness function for 
proper solutions to be obtained. 

Given these criteria, we have chosen a fitness function 
defined by the total energy of the conformation, Etot, given 
by: I. M 

i=l i=l 

where FNeE and F”*,,,, are the force constants for the NOE 
and vdW interactions, respectively, L and M are the num- 
ber of NOE and vdW interactions, and ri is the intera- 
tomic distance. For the NOE interactions, the error in the 
internuclear distance, rierr,,r, is given by: 

(r;3)-“3 - rUpr,,, for (r;3)m1’3 >r,,Uppe, 

brrar = (21 
(r;3)m1’3 - rl,,Owel for (r;3)-1’3 <ri,,Owel 

where ri ~~~~~ and ri ,O,,,er are the upper and lower bounds of 
a square-well potential, and 

where ri(k) is the interatomic distance for the kth member 
in the ensemble, and N is the number of members in each 
ensemble. Dihedral angles were not restrained in these 
calculations, but this can easily be incorporated. 

In this application we have included several modifica- 
tions to the basic GA, all of which were developed to 

maintain high diversity between individuals within the 
population while decreasing the amount of time spent 
searching nonproductive regions of conformational space. 
A distributed GA with migration between subpopulations 
(Schaffer, 1989) was used with a migration probability of 
2.0% per subpopulation per generation, and up to 30% of 
the size of the subpopulation was allowed to migrate. 
Typically, four subpopulations were used. The members 
who migrated were randomly chosen from the ‘visiting’ 
population and replaced members in the ‘host’ popula- 
tion. A proportional selection scheme was used to select 
mates. In this process, each gene was assigned a mating 
probability which was proportional to its contribution to 
the total fitness of the population. For example, a popu- 
lation of four genes with fitnesses of 20, 50, 30 and 100 
(arbitrary units) would have mating probabilities of 10, 
25, 15 and 50%, respectively. Mates were then randomly 
chosen according to these probabilities until the number 
of offspring equaled the size of the population. A maxi- 
mum of two two-point cross-overs were used with a 
cross-over probability of 95% per mated pair and a maxi- 
mum splice length of 30% of the length of the entire 
chromosome. Exponentially weighted mutation rates 
(Schaffer, 1989) were used with base mutation probabil- 
ities of 0.001% for the most significant bit and 1.0% for 
the least significant bit. ‘Sigma’ fitness scaling (Goldberg, 
1989; Brodmeier and Pretsch, 1994) was used with a scale 
factor of 1.0. Elitism (Goldberg, 1989) was also incorpor- 
ated, where the single best gene from each generation was 
maintained intact in the next generation. Finally, to en- 
hance diversity, if identical genes survived the mating 
process, one of the genes was kept and all others were 
replaced with random bit strings. The GA progressed 

1000 

200 

0 

generation 
Fig. 2, Energy profiles showing the best total energies for several 
calculations on the three-atom model system. The dotted line (denoted 
by the asterisk) represents the best total energy for the single binding- 
site case as described in the text (only one member was included in the 
ensemble). For the two-site simulations, the results of evolving N= 1, 
2 and 3 conformations are shown. 
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until either an energy criterion was fulfilled or a maxi- 
mum number of steps was exceeded. 

Evolving ensembles 
The procedure for evolving ensembles of ligand mol- 

ecules is essentially identical to that described above, save 
that chromosomes for N individuals were concatenated to 
form a ‘superchromosome’. For example, (lOlOlOlO)- 
(11111111) and (OOOOOOOO)(OlOlOlOl) are two chromo- 
somes with two genes of eight bits. Concatenation of 
these two chromosomes produces the superchromosome 
(lOlOlOlO)(llllllll)(OOOOOOOO)(OlOlOlOl) whichencodes 
parameters for two distinct molecules. For example, genes 
1 and 2 can describe x- and y-translations for the first 
conformation while genes 3 and 4 describe x- and y-trans- 
lations for the second conformation. During the evolution, 
the superchromosomes are evaluated, and N distinct con- 
formations are ‘docked’ onto the protein. vdW violations 
were calculated and summed for each of these conforma- 
tions, but the interatomic distances were ( rm3)m”3 averaged 
before submission to the NOE evaluation step; see Eq. 3. 
Importantly, it was the fitness of the ensemble that deter- 
mined the superchromosome’s probability for mating. It 
should be noted that the population size is independent of 
the ensemble number. Increasing the population size in- 
creases the number of chromosomes (or superchromoso- 
mes), while increasing the ensemble number increases the 
size of each chromosome. 

Model systems 
The GA was first applied to a model system which 

consisted of two atoms fixed in two-dimensional Carte- 
sian space at (-3,O) and (0,3) (in A) and a third atom 
whose x- and y-coordinates were evolved. The third atom 
was allowed to move within ranges of -6.0 to 6.0 A and 
-2.0 to 2.0 A in the x- and y-dimensions, respectively. 
Simulations were performed to mimic one- and two-site 
interactions. For the one-site system, the third atom was 
required to be within 1.0 A of the atom at (-3,O). For the 
two-site system, the third atom was required to be within 
1 .O A of both fixed atoms. A force constant of 50 Am2 was 
used with no vdW restraints. A single population of 100 
members was evolved in these calculations. 

The method was also applied to the streptavidin-biotin 
complex. Coordinates of the crystal structure were ob- 
tained (Weber et al., 1989), protons were added (using 
InsightII, Biosym Technologies, Inc.) and ‘H-‘H inter- 
molecular distance restraints were estimated between the 
nonexchanging protons of biotin and streptavidin. A total 
of 32 distances were observed between 2.5 and 4.0 A and 
15 of these were randomly chosen as NOE distance re- 
straints for the simulations. For the purpose of testing the 
efficacy of ensemble averaging, an alternate ligand posi- 
tion was obtained by manually docking the ligand on the 
protein surface (see Fig. 5B). No energetic or shape cri- 
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Fig. 3. Cartesian coordinate results for the two-site simulations on the 
three-atom model system using N= 1, 2 and 3 members in the 
ensemble. The third atom (represented by the filled circles) was 
required to be within 1.0 A of coordinate pairs (-3,0) and (3,0). The 
regions of space defined by these restraints are enclosed by the dotted 
circles. The 50 lowest energy solutions are shown for each case. 

teria were used, except to avoid vdW violations. For this 
ligand position (between 2.5 and 4.0 A), 16 ‘H-‘H dis- 
tances were observed and 11 of these were used as addi- 
tional distance restraints. A lower bound of 1.8 A was 
used on all restraints, and upper bounds of 3.3 and 4.0 A 
were used appropriately. This resulted in six and five 
restraints between I.8 and 3.3 A for the crystal structure 
site and the manually docked site, respectively, the re- 
maining nine and six restraints being between 1.8 and 4.0 
A. Force constants of 50 Am2 and 50 A (Torda et al., 
1989) were used for the NOE and vdW interactions. The 
biotin molecule was allowed to move within a 40 A3 box 
centered about the streptavidin center-of-mass. As shown 
in Fig. 5A, the initial population consisted of ligands 
within a box around streptavidin; no vdW violations 
between the ligands or between the ligand and the protein 
were allowed. Three translations and rotations of the 
biotin molecule were evolved, as well as five dihedral 
angles of the biotin ‘tail’, for a total of 11 parameters. 
Four subpopulations of 100 members (a total population 
of 400) were evolved, and the minimum-energy conforma- 
tions were typically found in less than 500 generations. 
Each generation took less than 5 s on a Silicon Graphics 
Indy workstation. All software was written in-house. 

Results 

Three-atom system 
Figures 2 and 3 show energy profiles and Cartesian 

coordinate solutions from several GA simulations on the 
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three-atom model system. When the third atom was con- 
strained to be within 1.0 A of the atom at (-3,0), the GA 
rapidly (< 10 generations) found low-energy conforma- 
tions (dotted line in Fig. 2). In a second simulation, de- 
signed to mimic a two-site interaction, no low-energy 
conformations were found when only a single conforma- 
tion was encoded by each chromosome (N = 1). However, 
low-energy solutions were obtained when two or three 
conformations were encoded by each chromosome (N = 2 
and N = 3; see Fig. 2). For the case of N = 2, all solutions 
corresponded to one ensemble member in the vicinity of 
each of the two fixed atoms, as expected. In the case of 
N= 3, many conformations were obtained which were 
> 1 .O A from either fixed atom. These solutions did fulfill 
the distance restraints (one member within 1.0 A of each 
of the two fixed atoms), but the Cartesian coordinates of 
the third member were virtually unconfined. 

Streptavidin-biotin complex 
Figure 4 shows the energy profiles for several GA trials 

on the streptavidin-biotin complex. As an initial test, 
only restraints corresponding to the single conformation 
observed in the crystal structure were used. It is clear 
from Fig. 4A that the GA rapidly evolved to the opti- 
mum conformation (EtQt < 20 in less than 200 generations). 
In addition, no advantage was gained by ensemble aver- 
aging; a low-energy conformation was obtained with a 
single member. The GA was then applied using restraints 
from the two ligand binding sites. The progress of the 
GA with N= 1 (no averaging), and ensemble averaging 
over two and three conformations is shown in Fig. 4B. As 
in the three-atom model discussed above, no low-energy 
conformation was found with only a single member in the 
ensemble (N= 1). However, low energies were obtained 
with N = 2 or N = 3. A Cartesian coordinate superposition 
of the 10 lowest energy ensembles for the N = 2 simulation 
is shown in Fig. 5B. 

Discussion 

Ensemble averaging within the GA was successful on 
both systems described in this paper, and the results high- 
light several advantages this approach may have over 
conventional techniques. First, the number of binding 
sites can be directly investigated. In both systems, two 
binding sites were used and reasonable energies were 
obtained only upon increasing the number of conforma- 
tions in the ensemble from one to two. No decrease in 
final energy was observed upon increasing the ensemble 
number to three. This indicates that two conformations 
are the minimum necessary to fulfill the distance re- 
straints. Second, detailed structural information can be 
obtained about each binding orientation when the correct 
number of conformations is used. Figures 3B and C show 
the dramatic differences in GA solutions for the three- 

atom system when two and three members are used in the 
ensemble, respectively. All conformations for the N=2 
case are within the allowed conformational space, while 
many conformations for the N= 3 case are significantly 
outside of this range. The same result was observed for 
the streptavidin-biotin complex (not shown). This indi- 
cates that detailed structural information about the ligand 
interaction site can be lost if the number of conforma- 
tions in the ensemble exceeds the minimum. This is due 
to the fact that after the minimum number of conforma- 
tions to adequately fulfill the constraints are employed, 
the ( r-3)-“3 averaging of the interatomic distances allows 
the ‘extra’ members to adopt nonideal conformations 
with virtually no energetic penalty. In the biotin- 
streptavidin complex, two conformations were determined 
to be the minimum necessary to fulfill the restraints (as 
expected), and to enable structural information to be 
obtained about each site (see Fig. 5B). 
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Fig. 4. Energy profile showing the best total energy for (A) a single 
orientation in the binding site; and (B) two distinct orientations. The 
results from evolving ensembles of 1, 2 and 3 conformations are shown 
in each panel. In (A), a restraint set of 15 randomly chosen inter- 
molecular distances found in the streptavidinbiotin crystal structure 
was used (see text). In (B), 11 additional restraints were added which 
corresponded to a proximal site on the protein (see text and Fig. 5B). 
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Fig. 5, (A) The initial population for the biotin-streptavidin complex simulation. A total of 160 ligand coordinates were generated. (B) Cartesian 
coordinates results of evolving a two-membered ensemble for the two-orientation simulation (N= 2 in Fig. 4B). The lowest Et,,t ensemble from 10 
separate GA simulations is shown in red. The ensembles shown here consist of a single conformation in each of the two binding sites. Shown in 
white are the ligand positions for the crystal structure (denoted by the asterisk; 15 restraints used in the simulation) and the manually docked ligand 
(11 restraints used in the simulation). The alternate ligand position was chosen for clarity. No energetic or shape criteria were used, except to avoid 
vdW violations. Superpositions were based on protein backbone coordinates, which were held fixed during the simulations. 

Although not utilized in these examples, the side chains 
of the protein can also be evolved. The inclusion of side- 
chain flexibility allows for small conformational changes 
of the protein in order to accommodate the ligand. This 
is especially important for side chains which are ill-de- 
fined by NMR data. However, the GA is not currently 
able to handle the evolution of aZZ protein dihedrals to 
allow for large conformational changes upon binding. 
These searches become intractable without severely re- 
stricting the search space, and we have found that the GA 
is best suited for a small number of evolving parameters. 

Conclusions 

The results presented here support the viability of 
using the genetic algorithm for docking a ligand to its 
receptor protein using NMR-derived restraints. The con- 
formations obtained in the single-site simulations of the 
biotin-streptavidin complex were free of any vdW viol- 
ations and were essentially identical to that observed in 
the crystal structure. Conformational averaging is easily 
and predictably incorporated into the algorithm, allowing 
the experimentalist to determine not only the minimum 
number of binding conformations, but also detailed struc- 
tural information about each site. All of these characteris- 
tics make the GA a valuable tool in the experimental 
investigation of proteinligand complexes. 
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